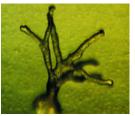
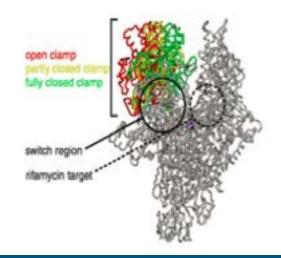


Corallopyronin A – a natural antibiotic against helminths, STI and Staphylococci

Achim Hoerauf

Institute for Medical Microbiology, Immunology and Parasitology (IMMIP)
German Center for Infection Research (DZIF), partner-site Bonn-Cologne
University Hospital Bonn
Bonn, Germany

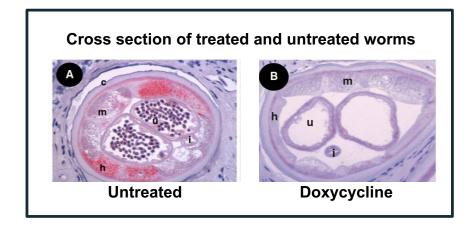




Background: Corallopyronin A (CorA)

Corallococcus coralloides

- Produced by Corallococcus coralloides
 - -Soil Myxobacteria
- Inhibits bacterial DNA dependent RNA polymerase
- Novel MoA: different from rifamycins
 - Effective against rifampicin-resistant S. aureus
- Effective against Gram-positive bacteria
 - -E. coli Δ tolC mutants are sensitive



Primary Indication: Treatment of Filariasis

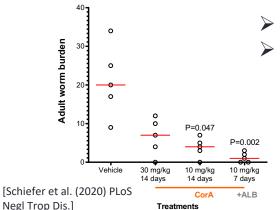
(Lymphatic filariasis & Onchocerciasis)

Caused by filarial nematodes

- Lymphatic filariasis (elephantiasis, 51 million infected*)
- Onchocerciasis (river blindness, 21 million infected*)
- CorA has efficacy against Wolbachia bacterial endosymbionts of filariae
 - ► In vivo depletion of Wolbachia → blocked development, worm death

River blindness

Elephantiasis



Primary Indication: Treatment of Filariasis

(Lymphatic filariasis & Onchocerciasis)

Caused by filarial nematodes

- Lymphatic filariasis (elephantiasis, 51 million infected*)
- Onchocerciasis (river blindness, 21 million infected*)
 - CorA has efficacy against Wolbachia bacterial endosymbionts of filariae
 - *In vivo* depletion of *Wolbachia* \rightarrow blocked development, worm death

Kills adult worms

Better efficacy than the comparator substances

	Minimal effective dose gerbil
Doxycycline	100 mg/kg QD 28 days
CorA	30 mg/kg BID 14 days
CorA + Albendazole	10 mg/kg BID + ALB 7 days

River blindness

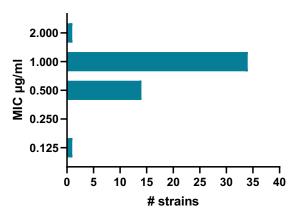
Elephantiasis

Patents:

US 9 168 244

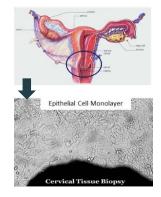
US 9 687 470

EP 12 721 456.7



Secondary Indication: Treatment of gonorrhea

CorA is effective against Neisseria gonorrhoeae

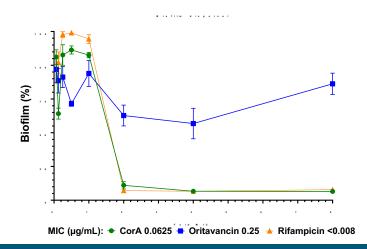


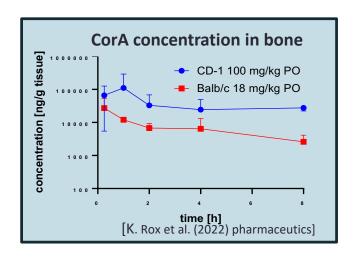
- 50 CDC and 14 WHO *N. gonorrhoeae* MDR/XDR strains
- No spontaneous resistance selected at 4X MIC
 - Predict a frequency of mutation $\leq 10^{-10}$ (clinical strains)

Activity vs. WHO N. gonorrhoeae, primary cervical epithelial cells

- 4	μg/mL to cure Pex cells after 48 hrs		
Strain	CorA	Ceftriaxone	
1291	0.5	0.5	
WHO-M	1	0.5	
WHO-X	2	R	
WHO-Y	1	R	
WHO-Z	1	R	

[Edwards et al. (2022) mSphere]


Collaboration with leaders in gonorrhoeae research:


- Prof. Dr. William Shafer: Emory Antibiotic Resistance Center, Emory School of Medicine
- Prof. Dr. Magnus Unemo: WHO Collaborating Centre for Gonorrhoea and Other STIs, Sweden
- Prof. Dr. Jennifer Edwards: Center for Microbial Pathogenesis, Nationwide Children's Hospital

Secondary Indication: Treatment of S. aureus / MRSA

- Alternative antibiotic to treat antimicrobial resistant strains:
 - Active against rifampicin-resistant Staphylococcus aureus, MRSA and VISA
 - S. aureus CorA rate of mutation is lower than rifampicin CorA: 1.7x10⁻⁸ vs⁻ Rifampicin: 1.0x10⁻⁷
- CorA has good activity against S. aureus biofilm formation and disperses biofilms
- Good PK biodistribution into bone → osteomyelitis

Non-GLP in vitro and in vivo toxicity

In vitro and in vivo safety data	Conclusion	
Off target profiling	A3, PPAR γ , COX1; EC $_{50}$ = 170-850X higher than CorA EC $_{50}$ = 0.016 μ M against <i>Wolbachia in vitro</i>	
Cyp inhibition	No inhibition of six recombinant human CYPs; inhibition of 2CP	
CYP 3A4 induction via PXR	Minimal inducer: 12 μM CorA vs 1.5 μM Rifampicin, DDI unexpected	
Non-GLP Micronucleus	No induction of chromosomal damage, no genotoxicity	
Non-GLP AMES (5 strains)	No evidence of genotoxicity	
Phototoxicity	No phototoxicity up to limit of solubility (38 μM)	
Liver toxicity	No toxicity in hepatocytes from rats or humans (200μM)	
Non-GLP hERG	Predicted IC ₅₀ = > 10 μ M	
MTD rat	1000 mg/kg; mild clinical symptoms	
MTD dog	1000 mg/kg; moderate, transient symptoms	
7d repeated-dose rat: 0, 250, 1000 mg/kg/d	250 mg/kg/d, no effects seen	
7d repeated-dose dog: 0 , 150, 450, 750 mg/kg/d	NOEL : 150 mg/kg bw/d; Predicted HED = 4 mg/kg.	

CorA has no relevant safety issues

➤ Next: GLP toxicity in Q4/2023-Q2/2024

Development strategy: hybrid approach

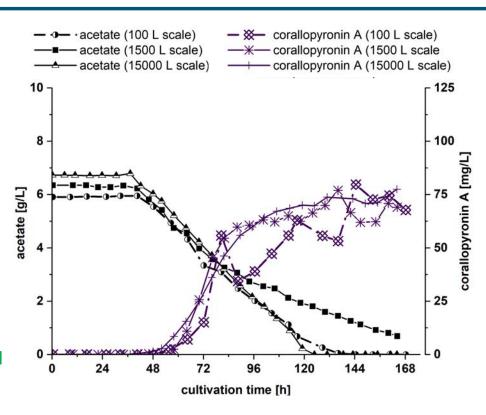

- Public health funding for filarial indication until Phase I
 - At clinical proof-of-concept we would partner with
 - public health branch of a major pharmaceutical company (currently Eisai)
 - public-private-partnership (DNDi)
- Commercial market for staphylococci indications
 - In parallel development for ABSSI infections and bone/ prosthetic infections
 - CABP infections offer another route to market
 - Founding a spin-off company for investments

Production process of high quality research grade material (HQ-RGM) at HZI

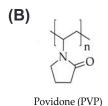
Stable production of HQ-RGM (90%-95%) in multi-gram scale

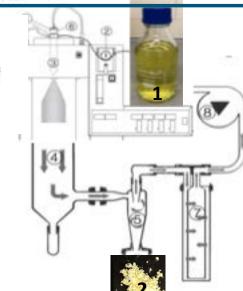
- In-house 150 L/ 350 L scale production
- Average yield USP ~ 80 mg/L
- Average yield DSP ~ 70 % yield

Upstream and downstream processing of CorA


Scale up to kg range

- USP successfully scaled up to 15m³
 - Titers equivalent to those observed at HZI


Next: GMP production for GLP toxicity and clinical trial material at Phyton (Germany/Canada)



CorA formulation – amorphous dispersion

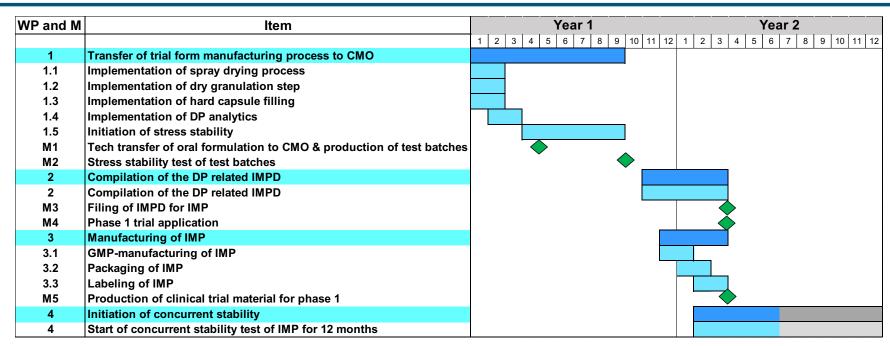
Neat-CorA

Step 1: Preparation of CorA and polymer solution. Drug load 20%.

Step 2: Spray drying.

Step 3: Dry granulation, milling, and sieving (125-249 μ m).

Step 4: Free flowing powder filled into gastro resistant capsules (HPMC-AS)


CorA embedded in PVP or PVP/VA

- Improved oral bioavailability in mouse, rat and dog [F from 5% to 35%-60%]
- Improved stability [stable >3 months at 30 °C, >6 months at 25°C]
- > Formulation Patent EP 20 172 409.3; GMP compatible

[Krome et al. (2020) Pharmaceutics 12, 1105]

EKFS work program: Production of CorA clinical trial material

- Start of the project: identification of suitable CMOs for the production of IMP
- EU-tendering process
- Production of drug substance and GLP toxicity package in parallel

DZIF partners and external advisors

Production

- <u>Fermentation and DSP:</u>
 <u>HZI, MWIS, Braunschweig:</u> M. Stadler,
 R. Jansen, M. Große, B. Sandargo
- <u>Heterologous producer:</u> *HZI, MINS, Saarbrücken:* R. Müller
- CMO: Bio Base Europe Pilot Plant, Belgium

Project Supervision

- TPMO: T. Hesterkamp, S. Alt, M. Steindorf
- Project Advisory Group (PAG):
- H. Rübsamen-Schaeff, AiCuris, Advisor
- R. Lehnert, Regulator at BfArM
- J. Reinhard-Rupp, Head of Merck Global Health Advisor
- D. Busch, Chairman of the DZIF Executive Board
- T. Jäger, DZIF Managing Director

Qualified Person

J. Thumann

- Project leader: A. Hörauf
 - Project management: A. Schiefer, K. Pfarr

Efficacy studies

- <u>Filarial Indication:</u>
 <u>IMMIP:</u> M. Hübner, A. Ehrens, H. Neufeld,
- Gonococcal Indication:
 Emory Antibiotic Resistance Center, Atlanta: W. Shafer
 Nationalwide Children 's Hospital, Ohio: J. Edwards
 WHO Collaborating Centre for Gonorrhoea, Sweden: M. Unemo

U. Klarmann-Schulz, T. Aden, M. Fendler, M. Koschel

- <u>Mycobacteria Indication:</u> *Universidad Pontificia Bolivariana, Medellín, Colombia:* J. Robledo
- <u>Staphylococcal Indication:</u>
 Uni BN: T. Schneider, G. Bierbaum, C. Szekat
 HZI: K. Rox , E. Medina, H. Schrey, M. Müsken

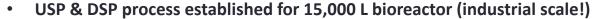
Formulation

Uni BN: K. Wagner, S. Kehraus, T. Becker, J. Heitkötter

Toxicological Consulting

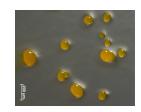
I. Stammberger

contact: achim.hoerauf@ukbonn.de

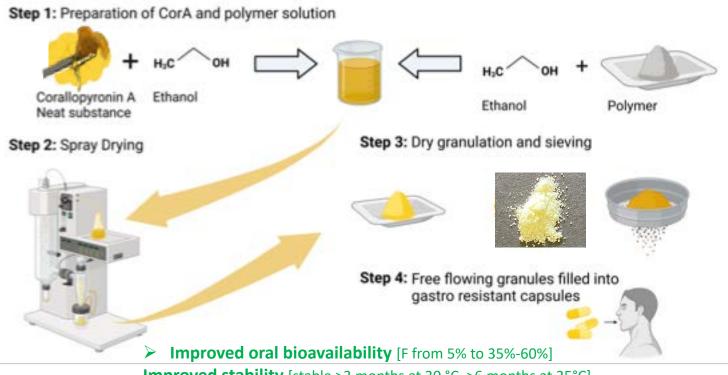


Project summary - Corallopyronin A (CorA)

- CorA is a natural product of *Corallococcus coralloides* that is heterologously expressed in *Myxococcus xanthus*
- A bacterial RNA polymerase inhibitor with novel MoA in preclinical development:
 - As antifilarial drug to treat onchocerciasis
 - Adulticidal activity with 10-14 day treatment


- Effective vs. MDR/XDR clinical strains
- Depletes established biofilms and prevents biofilm formation
- Medium (S. aureus) to no (N. gonorrhoeae) resistance selection

- GLP appropriate oral formulations developed
- GMP-compliant Master Cell Bank (MCB) is available
- No prohibitive safety issues
- Phase I clinical trials scheduled for 2025/2026



Corallococcus coralloides

CorA formulation process—amorphous dispersion

Improved stability [stable >3 months at 30 °C, >6 months at 25 °C]
Formulation Patent EP 20 172 409.3

